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Line tension vector thermodynamics of anisotropic contact lines

Alejandro D. Rey*
Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 2B2

~Received 1 August 2003; published 30 April 2004!

Multiphase materials with intersecting diving surfaces give rise to contact lines. A line tension vector
thermodynamics formalism is developed and used to analyze contact line problems in the presence of anisot-
ropy, taking into account two elastic modes: change in contact line length and change in contact line orienta-
tion. Using this formalism, the contact line-shape equation is derived, and the renormalization of the line
tension due to anisotropy is characterized. The correspondence and analogies between the shape equation for
anisotropic surfaces~Herring equation! and the shape equation for contact lines is established. Line energies
for nematic liquid crystals, representative of generic anisotropic contact lines, are used to derive a shape
equation that takes into account ambient orientation effects. It is found that anisotropic line tension may
promote bending and chiral modes to avoid unfavorable orientations of the contact line with respect to the
ambient nematic ordering.
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I. INTRODUCTION

The physics of liquid-crystal interfaces is currently an a
tive area of fundamental and applied research@1–6# since
many applications of these soft anisotropic mesomorp
materials involve multiphase systems. Orientation pheno
ena and orientational transitions at surfaces of fixed ge
etries ~hard surfaces! are well characterized experimental
@1–3# and theoretically@4–7#. On the other hand, deformin
soft anisotropic nematic interphases are less well-underst
Intersecting interfaces appear in wetting, spreading, flo
tion, foaming, and fluid-liquid crystal displacement pr
cesses and are examples where contact lines are pr
@8,9#. At present, the understanding and characterization
contact lines formed by the intersection of three or m
interfaces that include nematic phases is starting to be de
oped@10–13#. This paper presents a contribution to the fo
mulation of models of systems displaying nematic-liqu
crystal contact line phases. A typical example is a nem
droplet or lens suspended at the interface between two
tropic fluids. Generalizations to other triple lines, such
those arising at the intersection of solid-isotropic-fluid
nematic-liquid-crystal phases, can be made following
procedure presented in this paper. Since liquid crystals
anisotropic soft materials, elastic anisotropy is present als
interfaces and contact lines. This paper focuses on the ro
elastic anisotropy on contact lines. Figure 1 shows a re
sentative schematic of a contact line (Ccl) arising from the
intersections of three interfaces:a-N, N-b, anda-b. In this
paper,N represents a uniaxial nematic liquid crystal, a
hence the contact line is anisotropic due to the presenc
nematic orientational order defined by the unit vector~direc-
tor! n.

Theories for liquid-crystal statics are classified accord
to their level of description of nematic order, such as in~i!
Landau–de Gennes theory, which describes nematic o
using the tensor order parameter, and~ii ! the Frank-Oseen
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theory, which uses the director vector to describe nem
ordering. The tensorial Landau–de Gennes force and tor
balance equations of nematic liquid crystals have been
sented and used extensively for bulk, surface, and line ph
~see, for example,@3,5,10,13–17#!. The vectorial Frank-
Oseen force and torque balance equations of nematic liq
crystals have also been formulated and used for bulk,
face, and line phases with various degrees of approximat
~see, for example,@1,3,6,10,13,14,18#!. In this paper, we
shall derive a simple vectorial director theory for nema
contact lines, and hence scalar order parameter@14# phenom-
ena are beyond the scope of this paper.

It is useful to briefly consider anisotropy in surfac
phases. The contribution of anisotropy in interfacial statics
embodied in Herring’s equation for capillary pressurepc
@19,20#:

~1!

FIG. 1. Schematic of a contact line (Ccl) arising from the inter-
sections of three interfaces:a-N, N-b, anda-b. In this paper,N
represents a uniaxial nematic rodlike liquid crystal, and hence
contact line is anisotropic due to the presence of nematic orie
tional order defined by the unit vector~director! n. In this case, the
contact line is a triple line.
©2004 The American Physical Society07-1
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whereg is the surface tension,]2g/]u i
2 ; i 51,2 are the sec-

ond derivatives with respect to surface inclination along
direction of maximum surface energy change, andk1 andk2
are the surface curvatures. The underlying text shows
physical origin of two contributions:~i! change in surface
energy due to changes in the area size~isotropic effect!, and
~ii ! change in surface energy due to area rotation~anisotropic
effect!. For anisotropic surfaces, the capillary pressure is
divergence of the capillary vectorjs @19,20#:

pc5“s•j S ~2!

defined by

E g dA5E j S
•k dA, ~3!

wherek is the outward unit normal, and which indicates th
for anisotropic surfaces the scalar surface tension is ins
cient to describe surface processes since surface energ
also be changed by surface tilting.

Herring’s equation is widely used to model capillary ph
nomena in hard anisotropic surfaces@19,20#. Using surface
elastic anchoring energies specific to liquid crystals, previ
work showed that the capillary vector and Herring’s equat
for nematic-liquid-crystal interfaces are@21,22#

jS5gk1~ I2k•k!•
]g

]k
, ~4!

2pc5$g1g9@~n•e1!22~n•k!2#%k11$g1g9@~n•e2!2

2~n•k!2#%k22g9$tr~k•n!tr~“s•n!

1tr@~k•n!~“s•n!#%, ~5!

where the coefficients of the]2g/]u i
25g9@(n•ei)

2

2(n•k)2#; i 51,2 terms are orientation-dependent a
where the additional last term is due to director curvatu
hereg9 is the anchoring energy, andei ; i 51,2 are the eigen-
vectors along the principal directions of the surface. The u
fulness of capillary vector thermodynamics for nematic
terfaces was illustrated in@22#. Given the usefulness o
formulating and using vectorial thermodynamics for anis
tropic surfaces, it is natural to expect that similar advanta
will be found in formulating a vectorial thermodynamics f
anisotropic contact lines. In this paper, we derive a line t
sion vector thermodynamics and show that it provides
efficient path to analyze anisotropic contact line problem

Anisotropic line tension has been found in Langm
monolayers@23,24#, in crystalline materials@25,26#, and in
sessile drops supported by anisotropic elastic solids@27#. In
Langmuir monolayers, noncircular cardiod-shaped doma
arise due to an anisotropic contribution to the contact l
@23,24#. It was found that the line tension is a function
chain orientation with respect to the normal to the dom
boundary @23#. The evolution of two-dimensional~2D!
wormlike clusters on metal surfaces has been character
using anisotropic line tension@26#. The wetting properties o
soft anisotropic solids, such as gels and rubbers, was fo
04170
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to be a function of direction on the surface@27#. A classifi-
cation of line tensions for 2D and 3D systems based on
oretical and experimental considerations has been prese
@27#. Given this evidence, liquid-crystal mesophases are
pected to be good candidates to observe line tension an
ropy.

The objectives of this paper are to~i! derive the line vec-
tor thermodynamics for anisotropic contact lines and char
terize the energy storage modes represented by its com
nents, ~ii ! use liquid-crystal line energies to derive th
nematic line vector thermodynamics,~iii ! establish the cor-
respondence between the contact line vector thermodyn
ics and 1D nematostatics, as given in@13#, ~iv! derive the
shape equation for nematic contact lines, and~v! demonstrate
the usefulness of line vector thermodynamics by analyz
contact line-shape transitions.

The organization of this paper is as follows. Section
derives the generalized line tension vector for anisotro
contact lines. Section III derives the line tension vector
nematic contact lines. Section IV establishes the equivale
of the line tension vector and elastic line stress vector
nematic contact lines. Section V derives the shape equa
for anisotropic contact lines. Section VI presents an appli
tion of the model, and analyzes anchoring-driven shape t
sitions in nematic contact lines. Section VII presents the c
clusions.

II. THE LINE TENSION VECTOR FOR ANISOTROPIC
CONTACT LINES

To describe the geometry of a contact lineCcl, we use the
Frenet-Serret formulas. The principal geometric frame
~t,p,b!, wheret5p3b is the unit tangent,p5b3t is the unit
principal normal, andb5t3p is the binormal unit vector.
Representing the contact line byr5r (s), the curvaturek and
the torsiont are

d

dsF t
p
b
G5F 0 k 0

2k 0 t

0 2t 0
G F t

p
b
G . ~6!

The unit line diad isI ,5tt and the cross-section projectio
tensor is I c5I2I , . The line gradient operator is“,(•)
5I , •“(•). The divergence of the unit dyad is“, •I ,5kp.
The linear curvature dyadicb, is given by

b,52“,•p5ktt ~7!

and the line curvaturek by

k52“,•p5I ,:b,52I ,:“,•p. ~8!

Next we derive the contact line vector. For anisotrop
materials, the line free-energy densityx is a function of the
line unit tangentt: x~t!. The line tension vectorj~t! is de-
fined by the gradient of the scalar fieldrx,

j~ t!5“~rx!, r5r t, ~9!
7-2
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where r is the magnitude of line position vectorr . Noting
that x~t!, the gradient ofrx yields

d~rx!5“~rx!•dr ,

rdx1xdr5j•d~r t!5r j•dt1j•tdr. ~10!

Sincej•dt5j'•dt andj•t5ji , it follows by comparing the
coefficients ofdr anddt that

ji5j•tt5xt, ~11a!

dx5j' •dt. ~11b!

Dividing Eq. ~11b! by du, it follows that

j•
dt

du
5

dx

du
, ~12!

where du5udtu is a small rotation angle. Since the corr
sponding unit normal vector is given byp5dt/du, then it
follows thatj'5j•p5dx/du. The selected normal compo
nent of the line tension vectorj is the one that maximizes th
increase of surface energy with rotation, and hence

j'5j•I c5S dx

du D
max

po , ~13!

wherepo is the unit normal vector along whichdx/du has
the maximum rate of increase. For anisotropic contact lin
there is a principal anisotropy coordinate frame (po ,bo), and
the rotation of the unit line tangentt aroundbo produces the
maximum increase in surface energy. The principal anis
ropy frame (po ,bo) on the plane normal tot is selected by
the main anisotropic axes of the surface. Anisotropic lin
can change line energy by dilation and by rotation. Figur
shows an element of lengthLo5Lo•to and line unit tangent

FIG. 2. Schematic of a contact line element of lengthLo

5Lo•to and line unit tangentto that undergoes an expansion toL
and a rotation tot. Since the line energy densityx~t! is a function of
t, the total line energyX of the contact line can be increased by t
stretching of its lengthLo and by rotation of its unit tangentto .
04170
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to of the contact line that undergoes an expansion toL and
rotation tot. Since the line energy density is a function oft,
x~t!, the total line energyX of the contact line can be in
creased by expansion and by rotation oft. Figure 3 shows a
segment of the contact line, the components of the con
line vector j, their magnitudes, the principal anisotrop
frame (po ,bo), and the normal plane~NP! to the unit tangent
t. The principal anisotropy frame (po ,bo) defines the NP.
Figure 4 shows a schematic of the capillarity vectorsj and
2j, the normal2j' and tangential2ji components of2j,
acting on a point of the contact line, the NP, and the u
tangent vectort. The vector2j represents the line force
acting on the line vectorL5Lt tending to rotate (2j') and

FIG. 3. Definition and geometry of the contact line vectorj for
anisotropic contact lines. Schematic of a segment of the con
line, the contact line vectorj and its components, the principa
anisotropy frame (po ,bo), and the normal plane~NP! to the unit
tangentt. The projection of the line vectorj on the NP defines the
principal anisotropy frame (po ,bo).

FIG. 4. Schematic of the capillarity vectorsj and2j, the nor-
mal 2j' and tangential2ji components of2j, acting on a point
of the contact line, the normal plane~NP!, and the unit tangent
vector t. The vector2j represents the line force acting on the lin
vector L5Lt tending to rotate (2j') and shrink (2ji) the line.
For isotropic surfaces,j'50 and no rotational effects appear.
7-3
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shrink (2ji) the contact line. For isotropic surfaces,j'50
and no rotational effects appear.

Finally, the torques acting on the unit tangentt is given
by

s5j3t5t3~2j'!5S 2
dx

du D
max

~ t3po![S 2
dx

du D
max

bo .

~14!

For isotropic lines, the torque is zero.

III. THE LINE TENSION VECTOR FOR NEMATIC
CONTACT LINES

As mentioned above, for a nematic-liquid-crystal cont
line, the nematic orientational order is defined by the thr
component orientation unit vector mentioned above,n
5n(r ), wheren•n51. The tangential and normal compo
nents of the director field areni5tt•n and n'5(I2tt )•n.
The total elastic free energy of the contact line is

X5E xds5x0E ds1
x2

2 E S dr

ds
• n„r ~s!…D 2

ds,

~15a!

x~n•t,T!5xo~T!1xan~n•t,T!, ~15b!

xan~n•t,T!5
x2

2
~T! @n•t#2, ~15c!

wherexo is the isotropic contribution,xan is the anisotropic
anchoring energy contribution,x2(T) is the anchoring coef-
ficient, andT is the temperature. The anisotropic anchori
energy has been used to describe elastic~i.e., flexible poly-
mers! lines embedded in a nematic matrix@28#. More general
models containing line gradient terms have been propo
@13# but are beyond the scope of this paper. In this paper,
shall assume thatx.0, xo.0, and the admissible values o
the anchoring coefficient then are22x0,x2 .

To derive the nematic line tension vectorj, we use Eq.
~9!:

j~n,t!5“„rx~ t!…,r5rt , ~16!

where the directorn is kept constant and hencex~t!. Com-
puting the gradient of the scalarrx, using r 5r (r ,t) and t
5t(r ), gives

j~n,t!5“„rx~ t!…5x
]r

]r
1r

dx

dr
5xt1I c•

dx

dt
. ~17!

Thus the components of the line tension vector for nem
contact lines are

ji5xt; ~18a!

j'5I c•
dx

dt
5~ I c•n!

dx

d~n•t!
5x8n' , ~18b!
04170
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where x85dx/d(n•t). To put j' in the general form of
anisotropic contact lines@see Eq.~13!#, we letu be the angle
between the unit tangentt and the directorn, and get

j'5I c•
]g

]t
5S dx

du D
max

po , ~19a!

S dx

du D
max

5S 2
dx

du D , ~19b!

po5
n'

un'u
. ~19c!

Thus the maximum rate of increase ofx is just2dx/du, and
the selected normal vectorpo is the normal unit vector along
the projection of the director on the cross-sectional pla
po5n' /un'u. In nematic lines, the principal anisotrop
frame (po , bo5t3po) is defined by the intersection of th
t-n plane and the cross-sectional surface~NP!, and in that
frame the line tension vector reads

j5S x,po•
]x

]t
,0D . ~20!

Thus nematic contact lines may decrease the line energ
contraction or by rotation of the unit tangent around an a
that is perpendicular to the projection of the director on
cross-sectional surface. The nematic contact line behavio
isotropic only if

j'5x8n'50, ~21!

which is possible whenn'50 or whenx850. Whenni t, the
contact line behavior is isotropic. The special directorsn*
corresponding to the stable extrema ofx are known as the
easy axes and are~i! tangential,ni* 51, whenx2,0, and~ii !
homeotropic,n'

* 51, whenx2.0. Figure 5 shows the uni
tangent vectort, the directorn, the principal anisotropy axe
po and bo , and the line vectorsj and 2j' for the homeo-
tropic (x2.0) case. Rotation oft aroundbo in the direction
imposed by2j' gives the fastest rate of decrease in anch
ing energy, as indicated in Fig. 5 by the rotation arrow a
the % sign, above thebo axis. For the tangential case, th
orientations ofj' and 2j' are reserved, sincex2,0. The
torques acting on the unit tangentt is then given by

s5j3t5t3~2j'!52x8~ t3n'!. ~22!

IV. EQUIVALENCE OF LINE TENSION VECTOR AND
ELASTIC LINE STRESS VECTOR

The previous model of contact line nematostatics@13# is
based on the elastic line stress tensorT. This fundamental
quantity defines the line tension force densityf, f
5(“,•T), and the torque on the director,Tx52«:T; here«
is the alternator tensor. As in the case of interfaces@21,22#,
we next show that an equivalent but more transparent for
lation than the line stress tensor model emerges by using
line tension vector.
7-4
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We first summarize the main features of the previou
derived line stress tensor@13#. The 133 line stress tensorT
contains the following normalTn and bendingTb compo-
nents:

T5Tn1Tb . ~23!

The normal stress componentTn is the 1D analog to 3D bulk
pressure tensor components and 2D surface tension te
components, and accounts for line tension@8#,

Tn51xI , . ~24!

The bending contributionTb , found from a variation due to
small changes in the unit tangent vectort, is @13#

Tb5t~ I2tt !•
]x

]t
5t~pp1bb!•

]x

]t
~25!

and arises because energy changes with changes int. In the
principal line frame~t,p,b!, the bending stressTb has two
components@13#,

Tb5S p•
]x

]t D tp1S b•
]x

]t D tb. ~26!

Bending stresses take their name because they only have~tp!
and ~tb! components, that is, normal to the contact lin
Bending stresses are found in cables, strings, ropes,
ments, and quasi-1D materials@29#. Collecting results, the
total 133 line stress tensor is@13#

T5Ttttt1Ttptp1Ttbtb5xtt1S p•
]x

]t D tp1S b•
]x

]t D tb.

~27!

FIG. 5. Definition and geometry of the contact line vector f
nematic contact lines. Schematic of the unit tangent vectort, the
director n, the principal anisotropy axespo and bo , and the line
vectorsj and2j' for the homeotropic case (x2.0); in this case
the preferredn is normal tot. Rotation oft aroundbo in the direc-
tion imposed by2j' gives the fastest rate of decrease in anchor
energy, as indicated by the rotation arrow and% sign, above thebo

axis. For the tangential case, the orientations ofj' and 2j' are
reversed, since in this casex2,0.
04170
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Next we establish the relation between the stress tensT
and the line tension vectorj. Comparing Eqs.~18! and~23!–
~26!, we find that the correspondence between the line st
tensorT and the line tension vectorj is

T5tj, ~28a!

Tn5tji5xtt , ~28b!

Tb5tj'5x8tn' . ~28c!

In other words, the line tension vector is the stress vectorTv,
whereTv5t•T5j. Thus the components of the stress ten
T in terms of the contact line vectorj are

T5~j t,jp,jb!5~j i ,j'
p ,j'

b !5S x,p
]x

]t
,b

]x

]t D . ~29!

Equation~29! establishes the correspondence betweenT and
j.

Two additional results involving the line tension vect
establish its role in contact line statics. First, as mention
above, the dualTx of the line stress tensorT, Tx52«:T , is
the torque acting on the director. Introducing the line tens
vectorj, we find that the torque is then

Tx52«:T5t3j5t3j'5x8~ t3n'!, ~30!

which shows that the torque acting on the director is eq
and opposite to the torque acting on the unit tangent:Tx5
2s @see Eq.~22!#. Secondly, in 3D nematostatics the torq
balance equation is implied by the force balance equa
@6#. Likewise, in 1D nematostatics the projection of the d
rector torque balance equation along the tangent directio
implied by the force balance equation along that directi
The 1D gradient of the line energy is

“,x5
] f ,

]n
•~“,n!T1

]x

]t
•~“,t!T, ~31!

where the superscriptT denotes the transpose. Upon subtra
tion of the first term on the right-hand side, it becomes

“,x2
]x

]t
•~“,t!T5“,x2I c •

]x

]t
•~“,t!T5

]x

]n
•~“,n!T.

~32!

Using equation Eqs.~6!, ~15b!, and~17!, we recognize that

“,x2
]x

]t
•~“,t!T5t•

]j

]s
, ~33!

finally leading to required equality

t•
]j

]s
5S ] f ,

]n D • ]n

]s
. ~34!

The left-hand side is the force on the contact line@see Eqs.
~36!, and ~37a! below# and the term in parentheses on t
right-hand side is the director torque that appears in the

g

7-5
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torque balance equation~30!. Equation~34! establishes tha
the force balance equation implies the torque balance e
tion, as in the bulk case@6#.

In partial summary, we showed that the line tension vec
j is the line stress vectorTv, and established the correspo
dence between the previously formulated stress tensor m
@13# and the present contact line vector formulation. T
torque generated by anchoring energy on the director is e
and opposite to the torque acting on the unit tangent.
origin of the energy contributions to the line tension vec
sheds light on the mechanism that generates macrosc
line stress.

V. SHAPE EQUATION FOR ANISOTROPIC CONTACT
LINES AND NEMATIC CONTACT LINES

In this section, we use the line tension vectorj to derive
the governing force balance equation on a contact line,
anisotropic contact line-shape equation, and the nematic
tact line-shape equation. Details of the force balance eq
tion using the line stress model are given in@13#.

The static force balance equation on anisotropic liq
crystal contact lines is given by@13#

“,•T,1Fs1Fb50, ~35!

where Fs is a junction sum of surface forces andFb is a
junction integral of long-range bulk forces. For isotropic li
uids, in the absence of line and bulk forces, Eq.~35! reduces
to the contact angle Young equation@8#: p•Fs50. Using the
equality T5tj, the anisotropic contact line force balan
equation~35! simplifies to

]j

]s
1Fs1Fb50 ~36!

whose projection along the principal geometric frame„t,b,p…
yields the following much simpler equations:

S ]j t

]s
2kjpD1t•~Fs1Fb!50, ~37a!

S ]jp

]s
1kj t2tjbD1p•~Fs1Fb!50, ~37b!

S ]jb

]s
1tjpD1b•~Fs1Fb!50, ~37c!

where (j t,jp,jb) are defined in Eq.~29!. Equations~37! are
consistent with the classical force equations for rods, strin
filaments, and cables@29#. Equations~37b! and~37c! are the
shape equation for anisotropic contact lines, since they g
ern the curvaturek and twistt of the line. For the curren
constitutive Eq.~15b! there is no torsion energy associat
with the contact line@see Eqs.~15!# and hence Eqs.~37!
simplify to

f t1t•~Fs1Fb!50, ~38a!
04170
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]xo

]s
, ~38b!

f p1p•~Fs1Fb!50, ~38c!

f p5
]n

]s
•

]jp

]n
1k$x1x9@~n•p!22~n•t!2#%, ~38d!

f b1b•~Fs1Fb!50, ~38e!

f b5S ]n

]s
•

]jb

]n
1kx9~nn:pb! D , ~38f!

where f i ; i 5t,p,b, are the magnitudes of tangential, ben
ing, and twisting forces acting on the contact line, resp
tively, and wherex95x2 . Clearly line tension anisotropy
renormalizes the effect of the line tensionx on the curvature
force. Equation~38d! shows that the effective line tensio
xeff in the presence of anisotropy depends on nematic or
tation with respect to the contact line:xeff5x1x9@(n•p)2

2(n•t)2#. In addition, the 1D shape equation~38d! shows
that line gradients of the orientation give rise to ne
curvature- and torsion-independent contributions. For iso
pic contact lines, Eqs.~38! simplify to

]xo

]s
50, kxo1p•Fs50, b•Fs50. ~39!

Thep component of the force balance equations~38c! and
~38d! is the line-shape equation, since it governs its cur
ture, and is the 1D analog to the 2D nematic Herring eq
tion for anisotropic surfaces@30#, given in Eq.~5!. A more
revealing expression of Eq.~38d! is obtained by separating
and identifying the physical mechanism that can change
shape of the line. The three mechanisms contributing to
bending forcef p are

~40!

which shows that bending forces are generated by the con
line length, the contact line orientation, and director gra
ents. The correspondence between the contact line and
interface shape equations is

Interface Contact Line

tension g x
anisotropic effect g9 x9
geometric vectors ei ,k p, t
effect 2pc f p

shape equation ~5! ~40!

where all symbols have been previously defined. The be
ing force f p acting on the contact line is the 1D analog of t
capillary pressure2pc across the interface.
7-6
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For straight contact lines~k50!, the only bending force is
generated by director curvature,

f p5
]n

]s
•

]jp

]n
5x9H n•~ tp1pt!•

]n

]sJ . ~41!

For curved contact lines and director orientation along
principal axis, sayn5p, the bending forcef p is

f p5kx0 , ~42!

as in an isotropic contact line. For curved contact lines a
orientation along the unit tangent,n5t,

f p5kS x02
x2

2 D , ~43!

and the bending force is renormalized by the anchoring
ergy. Since the sign ofx2 is undetermined, competition o
cooperation between contraction and tilting of the cont
line may result.

In partial summary, the shape equations~38c! and ~38d!
for anisotropic contact lines are the 1D analog of the
capillary pressure Herring equation~1! for anisotropic sur-
faces@30#. Bending forces in anisotropic liquid-crystal con
tact lines include a number of novel effects:~a! bending
forces even for straight contact lines,~b! orientation-
dependent renormalization of the line tension coefficents
to anchoring energy, and~c! bending forces due to orienta
tion curvature. We next analyze the stability of nemat
liquid-crystal contact lines, where the manifestations of th
novel phenomena clearly emerge.

VI. APPLICATION OF LINE VECTOR
THERMODYNAMICS: ANCHORING-DRIVEN SHAPE

TRANSITIONS IN NEMATIC CONTACT LINES

In this section, we use the new formalism to analyze l
ear instabilities of the straight nematic contact line driven
changes in anchoring energy. These changes may arise d
changes in temperature or concentration. The spirit of
presentation is to provide an example of the utility of t
contact line vector approach. We realize that a complete
rigorous solution to nematic contact line problems involv
the simultaneous solution of bulk, interfaces, and line eq
tions @13#, which is beyond the scope of this work.

We assume thatn is given and constant and the soft co
tact line changes conformation due to changes in the anc
ing energy. The amplitude of the conformational change
infinitesimal since we consider linear instabilities. The sca
bending force that determines the shape of the line is, fr
Eq. ~40!,

f̄ p[ f p /x05k$11W@~n•p!22 1
2 ~n•t!2#%, ~44a!

W5
x2

x0
. ~44b!

The instability threshold condition for deviations from
straight line (k50) configuration is then
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f̄ * 5k$11W@~n•p!22 1
2 ~n•t!2#%>0, ~45!

where we dropped thep subscript for convenience. Thus th
contact line conformation depends on geometryk and orien-
tationn. The four characteristic small amplitude line fluctu
tion modes are~a! bending-tangential~BT! mode, ~b!
bending-homeotropic~BH!, ~c! helical-tangential~HT!, and
~d! helical-homeotropic~HH!, discussed below; it is noted
that bending and helical refer to the geometry of the mo
while tangential and homeotropic refer to the director orie
tation n with respect to the unit tangentt.

A. Bending modes

The bending or sinusoidal mode is planar and the line
confined to a plane, sayx2z. In a rectangular coordinate
system, assuming a small harmonic perturbation of am
tudea and wave vectorh on a contact line along thez axis,
the line equation, the unit tangent vectort, the principal unit
normal vectorp, and the curvaturek are given by

r5@a cos~hz,0,z!#, ~46a!

t5@2ak sin~hz,0,1!#, ~46b!

p5@1,0,ah sin~hz!#, ~46c!

k52ah2 sin~hz!. ~46d!

~a! Bending-tangential~BT! mode. For tangential orienta
tion n5(0,0,1), the threshold equation gives

f̄ bt* 52ah2 sin~hz!H 12
W

2 J >0. ~47!

Thus a bending-tangential mode emerges whenW.2.
~b! Bending-hometropic~BH! mode. For homeotropic ori-

entationn5(1,0,0), the threshold equation gives

f̄ bh* 52ah2 sin~hz!$11W%>0. ~48!

Thus a bending-homeotropic mode emerges when22,W
,21.

B. Helical modes

The helical mode is nonplanar and the line is confined
the surface of a cylinder of radiusa. In a rectangular coor-
dinate system, the helical contact line parametrizationr (s),
the unit tangent vectort, the principal unit normal vectorp,
and the curvaturek are given by

r5S a cos
s

c
,2a sin

s

c
,
bs

c D ,

~49a!

c5Aa21b2,
7-7



-

h

-

he
lic
.

ec

el

el

tant
he

the
into
od

ar
e of
es,
tact

1D

e
ur-

s of
t
hile
e is

e

nd

al
he

ALEJANDRO D. REY PHYSICAL REVIEW E69, 041707 ~2004!
t5S 2
a

c
sin

s

c
,2

a

c
cos

s

c
,
b

cD ,

~49b!

p5S 2cos
s

c
,1sin

s

c
,0D , k52

a

c2 .

The limit of a straight line appears asa→0, c→b, andk→0.
The magnitude ofb is the pitch of the helix.

~a! Helical-tangential~HT! mode. For tangential orienta
tion n5(0,0,1), the threshold equation gives

f̄ ht* 52
a

c2 H 12
W

2 S b

cD 2J >0. ~50!

Thus the helical-tangential mode emerges whenW
.2(c/b)2. As a→0, this threshold converges to the thres
old of bending-tangential mode:W.2.

~b! helical-hometropic~HH! mode. For tangential orienta
tion without loss of generality, we taken5~1,0,0!, and the
threshold equation gives

~n•t!25S a

cD 2S sin
s

cD 2

, ~51a!

~n•p!25S cos
s

cD 2

, ~51b!

f̄ hh* 52
a

c2 H 11WF S cos
s

cD 2

2
1

2 S a

cD 2S sin
s

cD 2G J >0.

~51c!

Thus the helical-tangential mode emerges when

W,
21

FcosS s

cD G2

2
1

2 S a

cD 2FsinS s

cD G2 . ~52!

In the limit of infinitesimal helix radius (a→0), the inequal-
ity becomes

W,
21

S cos
s

cD 2 ~53!

and the relevant upper value isW,21, which agrees with
the bending-homeotropic case.

Figure 6 shows the contact line-shape phase diagram
terms of the dimensionless anchoring energyW as a function
of helix aspect ratioc/b. The sinusoidal curves represent t
bending modes, while the helical curves represent the he
modes. We recall that in this analysisn is given and constant
The straight line is defined byc/b51 ~i.e, a50, k50). The
contact line conformation diagram is divided into three s
tors whose boundaries are obtained from Eqs.~47!, ~48!,
~50!, and ~52!. Within the upper~half-parabola! sector, the
straight contact line is unstable and the bending and h
modes are stable. Within the lower~rectangle! sector, the
straight contact line is unstable and the bending and h
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modes are stable. For tangential director orientation~the W
.0 sector!, the bending-tangential~BT! and helical-
tangential ~HT! modes set in forW.2. The smaller the
pitch, the higher the value of the required anchoring cons
(W) necessary to find the HT mode. Likewise, when t
director is normal to the line andW,21, the bending-
homeotropic~BH! and helical-homeotropic~HH! modes set
in. In the linear regime, the critical value ofW for helical-
homeotropic distortions is independent of the pitch. As
pitch decreases, additional energies have to be taken
account to regularize this Haddamard-like instability. Go
candidates are higher-order bending corrections@31# and sur-
face and bulk forces acting on the line@13#, but their exact
treatment is beyond the scope of this paper.

VII. CONCLUSIONS

Line tension vector thermodynamics provides a cle
pathway to analyze contact line problems in the presenc
anisotropy by differentiating the two possible elastic mod
namely change in contact line length and change in con
line orientation@Eqs. ~15b! and ~15c!#. The equivalence of
contact line vector thermodynamics and the equations of
nematostatics were established@Eq. ~28!#. The 1D shape
equation@Eq. ~40!# shows that anisotropy renormalizes th
line tension coefficient with a term that depends on the c

FIG. 6. Nematic contact line-shape phase diagram in term
the dimensionless anchoring energyW as a function of helix aspec
ratio c/b. The sinusoidal curve represents the bending modes, w
the helical curve represents the helical modes. The straight lin
defined byc/b51 ~i.e., a50, k50). For tangential orientation
(W.0 sector!, the bending-tangential~BT! and helical-tangential
~HT! modes set in forW.2. The smaller the pitch, the higher th
value of the required anchoring constant (W) necessary to find the
HT mode. Likewise, when the director is normal to the line a
22,W,21, the bending-homeotropic~BH! and helical-
homeotropic~HH! modes set in. In the linear regime, the critic
value ofW for helical-homeotropic distortions is independent of t
pitch.
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vature of line tension in orientation space@Eq. ~40!#. An
application of the shape equation to analyze shape transi
driven by anchoring energies~Fig. 6! shows that the line
vector thermodynamics is a useful tool to analyze the role
anisotropy in contact line processes.
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