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Line tension vector thermodynamics of anisotropic contact lines
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Multiphase materials with intersecting diving surfaces give rise to contact lines. A line tension vector
thermodynamics formalism is developed and used to analyze contact line problems in the presence of anisot-
ropy, taking into account two elastic modes: change in contact line length and change in contact line orienta-
tion. Using this formalism, the contact line-shape equation is derived, and the renormalization of the line
tension due to anisotropy is characterized. The correspondence and analogies between the shape equation for
anisotropic surfaceéHerring equationand the shape equation for contact lines is established. Line energies
for nematic liquid crystals, representative of generic anisotropic contact lines, are used to derive a shape
equation that takes into account ambient orientation effects. It is found that anisotropic line tension may
promote bending and chiral modes to avoid unfavorable orientations of the contact line with respect to the
ambient nematic ordering.
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[. INTRODUCTION theory, which uses the director vector to describe nematic

ordering. The tensorial Landau—de Gennes force and torque

The physics of liquid-crystal interfaces is currently an ac-balance equations of nematic liquid crystals have been pre-

tive area of fundamental and applied resedith6] since ~ Sented and used extensively for bulk, surface, and line phases
many applications of these soft anisotropic mesomorphi¢S€e, for example[3,5,10,13-17). The vectorial Frank-

materials involve multiphase systems. Orientation phenomPSeen force and torque balance equations of nematic liquid
crystals have also been formulated and used for bulk, sur-

ena and orientational transitions at surfaces of fixed geo . . . I
: : ; g mface, and line phases with various degrees of approximations
etries (hard surfacesare well characterized experimentally (see. for example[1.3,6,10,13,14,18, In this paper, we

[1-3] a_nd thepretlcall)[_4_—7]. On the other hand, deforming hall derive a simple vectorial director theory for nematic
soft anisotropic nematic interphases are less WeII-underst00§Ontact lines, and hence scalar order paranjétphenom-
Intersecting interfaces appear in wetting, spreading, floataéna are beyé)nd the scope of this paper

tion, foaming, and fluid-liquid crystal displacement pro- i is" seful to briefly consider anisotropy in surface

ngsezt and ar? (te;(ampljes \t/vh((aj(e congacthlmes{ are t.pres?‘fases. The contribution of anisotropy in interfacial statics is
[8,9]. At present, the understanding and characterization of .\, gied in Herring's equation for capillary pressurg

contact lines formed by the intersection of three or morji19 20

interfaces that include nematic phases is starting to be devel- """~

oped[10-13. This paper presents a contribution to the for-

mulation of models of systems displaying nematic-liquid- —p.= y(kitK;) +

crystal contact line phases. A typical example is a nematic area size change

droplet or lens suspended at the interface between two iso- area rotation

tropic fluids. Generalizations to other triple lines, such as

those arising at the intersection of solid-isotropic-fluid— o-N

nematic-liquid-crystal phases, can be made following the

procedure presented in this paper. Since liquid crystals are Nematic Liquid Crystal

anisotropic soft materials, elastic anisotropy is present also a

interfaces and contact lines. This paper focuses on the role ¢ o / .

elastic anisotropy on contact lines. Figure 1 shows a repre: //(

sentative schematic of a contact lin€%) arising from the

intersections of three interfaces:N, N-3, and«-. In this // —

paper,N represents a uniaxial nematic liquid crystal, and [

hence the contact line is anisotropic due to the presence @ —_—

nematic orientational order defined by the unit vedtirec-

tor) n.

Theories for liquid-crystal statics are classified according B

to their level of description of nematic order, such agiin FIG. 1. Schematic of a contact lin€¢) arising from the inter-

Landau—de Gennes theory, which describes nematic ordggctions of three interfaces=N, N-g, anda-g. In this paperN

using the tensor order parameter, &fid the Frank-Oseen represents a uniaxial nematic rodlike liquid crystal, and hence the
contact line is anisotropic due to the presence of nematic orienta-
tional order defined by the unit vectédirectop n. In this case, the

*Email address: alejandro.rey@mcgill.ca contact line is a triple line.
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where vy is the surface tensiora?,zy/aaiz;i =1,2 are the sec- to be a function of direction on the surfaf27]. A classifi-

ond derivatives with respect to surface inclination along thecation of line tensions for 2D and 3D systems based on the-
direction of maximum surface energy change, apéndx,  oretical and experimental considerations has been presented
are the surface curvatures. The underlying text shows thE27]. Given this evidence, liquid-crystal mesophases are ex-
physical origin of two contributionsti) change in surface pected to be good candidates to observe line tension anisot-
energy due to changes in the area gigetropic effect, and  ropy.

(i) change in surface energy due to area rotatinisotropic The objectives of this paper are @@ derive the line vec-

effect. For anisotropic surfaces, the capillary pressure is théor thermodynamics for anisotropic contact lines and charac-

divergence of the capillary vecta@® [19,20: terize the energy storage modes represented by its compo-
nents, (i) use liquid-crystal line energies to derive the

Pe=Vs &S (2 nematic line vector thermodynamiagij) establish the cor-

respondence between the contact line vector thermodynam-

defined by ics and 1D nematostatics, as given[i8], (iv) derive the
shape equation for nematic contact lines, andlemonstrate

j ydA=J £S.KdA, 3) the usefl_JIness of line vector thermodynamics by analyzing

contact line-shape transitions.

. i o The organization of this paper is as follows. Section Il
wherek is the outward unit normal, and which indicates thatderives the generalized line tension vector for anisotropic
for anisotropic surfaces the scalar surface tension is insufficontact lines. Section 1l derives the line tension vector for
cient to describe surface processes since surface energy cgématic contact lines. Section IV establishes the equivalence
also be changed by surface tilting. of the line tension vector and elastic line stress vector for

Herring's equation is widely used to model capillary phe-nematic contact lines. Section V derives the shape equation
nomena in hard anisotropic surfade®,2Q. Using surface  for anisotropic contact lines. Section VI presents an applica-
elastic anchoring energies specific to liquid crystals, previougon of the model, and analyzes anchoring-driven shape tran-
work showed that the capillary vector and Herring’s equationsitions in nematic contact lines. Section VII presents the con-

for nematic-liquid-crystal interfaces af21,22 clusions.
Jd
E=yk+(1-k-k)- a_:’ (4) Il. THE LINE TENSION VECTOR FOR ANISOTROPIC
CONTACT LINES
—pc={y+ 7y [(n-e)%=(n-K)?Pk,+{y+y[(n-&)? To describe the geometry of a contact li@€, we use the

5 , Frenet-Serret formulas. The principal geometric frame is
—(n-K)“Tp o= y"{tr(k-n)tr(Vs-n) (t,p,b), wheret=pXb is the unit tangenip=b X1 is the unit
+tr[(k-n) (V) ]}, (5)  principal normal, ancb=txp is the binormal unit vector.
Representing the contact line by r(s), the curvaturec and

where the coefficients of thed?y/96?=y"[(n-g)?  the torsionrare

—(n-k)?]; i=1,2 terms are orientation-dependent and

where the additional last term is due to director curvature; d t 0 k0T

herey” is the anchoring energy, amg; i = 1,2 are the eigen- —|pl=| -« 0 ~||lp (6)
vectors along the principal directions of the surface. The use- ds b o -+ ollb

fulness of capillary vector thermodynamics for nematic in-

terfaces was illustrated if22]. Given the usefulness of o o . L

formulating and using vectorial thermodynamics for aniso-1 € unit line diad isl =1t and the cross-section projection

tropic surfaces, it is natural to expect that similar advantage®nsor islc=1—1,. The line gradient operator i¥,(-)

will be found in formulating a vectorial thermodynamics for —'¢ - V(). The divergence of the unit dyad ¥ -1 ,= «p.

anisotropic contact lines. In this paper, we derive a line tenJhe linear curvature dyadig, is given by

sion vector thermodynamics and show that it provides an

efficient path to analyze anisotropic contact line problems. Be=—V¢-p=«it @)
Anisotropic line tension has been found in Langmuir

monolayerg 23,24, in crystalline material§25,26, and in ~ and the line curvature by

sessile drops supported by anisotropic elastic s¢Rd% In

Langmuir monolayers, noncircular cardiod-shaped domains k==Vg-p=1B¢=—1,V,-p. ®

arise due to an anisotropic contribution to the contact line

[23,24). It was found that the line tension is a function of  Next we derive the contact line vector. For anisotropic

chain orientation with respect to the normal to the domainmaterials, the line free-energy densjgis a function of the

boundary [23]. The evolution of two-dimensional2D) line unit tangentt: x(t). The line tension vecto&(t) is de-

wormlike clusters on metal surfaces has been characterizdihed by the gradient of the scalar fielg,

using anisotropic line tensidr26]. The wetting properties of

soft anisotropic solids, such as gels and rubbers, was found EW)=V(ry), r=rt, 9
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FIG. 2. Schematic of a contact line element of lendth
=L, t, and line unit tangent, that undergoes an expansionlto
and a rotation ta. Since the line energy densigt) is a function of
t, the total line energX of the contact line can be increased by the
stretching of its length., and by rotation of its unit tangeny .

wherer is the magnitude of line position vector Noting
that x(t), the gradient of y yields

d(rx)=V(rx)-dr,
rdy+xdr=£&-d(rt)=ré - dt+ & tdr. (10

Sinceé-dt=¢§, -dt andé-t=¢§, it follows by comparing the
coefficients ofdr anddt that

§ =& t=xt, (11a
dy=¢ -dt. (11b
Dividing Eq. (11b) by d#, it follows that
dt dy
£ 95= 40" (12

wheredé=|dt| is a small rotation angle. Since the corre-
sponding unit normal vector is given lp~=dt/dé, then it
follows thaté, = & p=dx/d@. The selected normal compo-
nent of the line tension vectdris the one that maximizes the
increase of surface energy with rotation, and hence

d
§i=§~lc=(d—’;) (13

wherep, is the unit normal vector along whiathy/dé has

Po:

X

the maximum rate of increase. For anisotropic contact lines,

there is a principal anisotropy coordinate franpg,b,), and
the rotation of the unit line tangentaroundb, produces the

PHYSICAL REVIEW E 69, 041707 (2004

\

FIG. 3. Definition and geometry of the contact line vecidor
anisotropic contact lines. Schematic of a segment of the contact
line, the contact line vecto€ and its components, the principal
anisotropy frame f§,,b,), and the normal plané\P) to the unit
tangentt. The projection of the line vectaf on the NP defines the
principal anisotropy framep(,,b,).

t, of the contact line that undergoes an expansioh tnd
rotation tot. Since the line energy density is a functiontpf
x(1), the total line energyX of the contact line can be in-
creased by expansion and by rotatiort.oFigure 3 shows a
segment of the contact line, the components of the contact
line vector & their magnitudes, the principal anisotropy
frame (p,,b,), and the normal plan@P) to the unit tangent

t. The principal anisotropy framep§,b,) defines the NP.
Figure 4 shows a schematic of the capillarity vect§rand
—§, the normal-§, and tangentiat- § components of- £,
acting on a point of the contact line, the NP, and the unit
tangent vectort. The vector— & represents the line force
acting on the line vector =Lt tending to rotate  &,) and

/

N

FIG. 4. Schematic of the capillarity vectoésand — &, the nor-

ropy frame ,,b,) on the plane normal to is selected by

of the contact line, the normal plar®P), and the unit tangent

the main anisotropic axes of the surface. Anisotropic linesiectort. The vector— £ represents the line force acting on the line
can change line energy by dilation and by rotation. Figure Zrector L =Lt tending to rotate £ &) and shrink ¢ £) the line.

shows an element of length,=L,-t, and line unit tangent

For isotropic surfacest, =0 and no rotational effects appear.
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shrink (— §;) the contact line. For isotropic surfaces,=0
and no rotational effects appear.

PHYSICAL REVIEW EG69, 041707 (2004

where y'=dy/d(n-t). To put & in the general form of
anisotropic contact lindsee Eq(13)], we let 6 be the angle

Finally, the torqueo acting on the unit tangentis given ~ between the unit tangemtand the directon, and get

by

dy [dx
dX dX fLZlc'E:<ﬁ) Po, (196)
o=§><t=t><<—§i>=(—d—9) (tXpo>E(—d—9) b e

max max dX dX
EIE-

do) .. do

For isotropic lines, the torque is zero.
ng

lll. THE LINE TENSION VECTOR FOR NEMATIC pﬁm- (199

CONTACT LINES

. L Thus the maximum rate of increaseyois just—dy/d 6, and
As mentioned above, for a nematic-liquid-crystal ContaCtthe selected normal vectgy, is the normal unit vector alon
line, the nematic orientational order is defined by the three: 06 9

: ; : . the projection of the director on the cross-sectional plane:
component orientation unit vector mentioned above,

. =n,/|n.|. In nematic lines, the principal anisotropy
=n(r), wheren-n=1. The tangential and normal compo- Po=N, /I, B ; . . i
nents of the director field arg,=tt-n andn, =(l—tt)-n. frame (o5, bo=tXpo) is defined by the intersection of the

The total elastic free energy of the contact line is t-n plane and the cross-sectional surfdbe), and in that

Ix
f: X1 Po &_t,O . (20)
(153

Thus nematic contact lines may decrease the line energy by

x(N-t,T)= xo(T) + xadN-t,T), (15D contraction or by rotation of the unit tangent around an axis

that is perpendicular to the projection of the director on the

_ X2 2 cross-sectional surface. The nematic contact line behavior is

XaN-t,T)=2-(T) [n-1]%, (159 isotropic only if

wherey, is the isotropic contributiony,, is the anisotropic & =x'n=0, (21)
anchoring energy contributiory,,(T) is the anchoring coef-
ficient, andT is the temperature. The anisotropic anchoring

energy has been used to describe elastc, flexible poly-

which is possible when, =0 or wheny'=0. Whennl|lt, the
contact line behavior is isotropic. The special directots

mer9 lines embedded in a nematic matfB8]. More general corresponding to_the S‘ab"? ex:remaAofare known as__the
models containing line gradient terms have been propose‘i’iasy axes _and*a_(e tangentialn, :_1' wheny,<0, and(ii) )
[13] but are beyond the scope of this paper. In this paper, w8omeotropic,ny =1, when,>0. Figure 5 shows the unit
shall assume tha¢>0, x,>0, and the admissible values of tangent vectot, the qllrectom, the principal anisotropy axes
the anchoring coefficient then are2xyo< x». p, andb,, and the line vectorg and — &, for the homeo-

To derive the nematic line tension vectérwe use Eq. TOPIC (x2>0) case. Rotation df aroundb, in the direction
(9): imposed by— £, gives the fastest rate of decrease in anchor-

ing energy, as indicated in Fig. 5 by the rotation arrow and
the @ sign, above thé, axis. For the tangential case, the
orientations of§, and — &, are reserved, sincg,<0. The
torque o acting on the unit tangerntis then given by

EnH=V(x(t),r=rt, (16)
where the directon is kept constant and henggt). Com-
puting the gradient of the scalay, usingr=r(r,t) andt

=t(r), gives (22)

o=EXt=tX (=& )=—x'(tXn)).
dy IV. EQUIVALENCE OF LINE TENSION VECTOR AND

ar dyx
EnO=Vrx(t)=x-+ry-=xttle 4. (1D ELASTIC LINE STRESS VECTOR

. . . The previous model of contact line nematostafit3] is
Thus the components of the line tension vector for nematigaseq on the elastic line stress ten$orThis fundamental
contact lines are quantity defines the line tension force density f
=(V,-T), and the torque on the directdr,= —:T; heree

§=xt (188 s the alternator tensor. As in the case of interfa@is22,
q q we next show that an equivalent but more transparent formu-
X X p lation than the line stress tensor model emerges by using the
&= C'E:(Ic'n)m:)( n, (18b ges by using

line tension vector.
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P, Next we establish the relation between the stress tehsor
and the line tension vect@: Comparing Eqs(18) and(23)—

(26), we find that the correspondence between the line stress

tensorT and the line tension vectdis
T=t¢, (283
T,=t§=xtt, 28b)
o . n=th=x (28b)
Tp=t& =x'tn, . (280

In other words, the line tension vector is the stress vettor
whereT=t-T= & Thus the components of the stress tensor
T in terms of the contact line vectdrare

J J
T=<§&§p,§b>=<§”,§f,§E>=(x,p7f,b—x). 29

FIG. 5. Definition and geometry of the contact line vector for ot

nematic contact lines. Schematic of the unit tangent vegttine . .

director n, the principal anisotropy axes, and b,, and the line Equation(29) establishes the correspondence betweemd
vectors§ and — &, for the homeotropic caseyg>0); in this case .

the preferredh is normal tot. Rotation oft aroundb, in the direc- Two additional results involving the line tension vector
tion imposed by- &, gives the fastest rate of decrease in anchoringestab"Sh its role in contact line statics. First, as mentioned
energy, as indicated by the rotation arrow amaign, above thés,  above, the dual, of the line stress tensdr, T,=—&£:T, is
axis. For the tangential case, the orientationsgpfand — &, are  the torque acting on the director. Introducing the line tension
reversed, since in this cage<0. vector & we find that the torque is then

We first summarize the main features of the previously Ty=—&eT=tX&=tXE =x'(tXn)), (30
derived line stress tenspt3]. The 1X 3 line stress tensor ] ) ) )
contains the fo”owing normaTn and bendingTb compo- which shows that the torque aCtlng on the director is equal
nents: and opposite to the torque acting on the unit tangént:

— o [see Eq(22)]. Secondly, in 3D nematostatics the torque
T=T,+T,. (23)  balance equation is implied by the force balance equation

) [6]. Likewise, in 1D nematostatics the projection of the di-
The normal stress componeR is the 1D analog to 3D bulk  rector torque balance equation along the tangent direction is

pressure tensor components and 2D surface tension tensgiplied by the force balance equation along that direction.

components, and accounts for line tensjéi The 1D gradient of the line energy is
T.=+xl,. (24) e P
| . . Vox= - (V) T+ S (V)T (3D
The bending contributiof},, found from a variation due to an dt

small changes in the unit tangent vectois [13] .
where the superscrift denotes the transpose. Upon subtrac-

ax ax tion of the first term on the right-hand side, it becomes
T,=t(l—tt)- ——=t(pp+bb). - (25
ot at
\Y —[?—X~(Vt)T:V — I ~(7—X~(Vt)T=(?—X-(V n)’
and arises because energy changes with changesrirthe X g Ve X e gt LVe on T EV
principal line frame(t,p,b), the bending stres$, has two (32
component$13], ) ] .
Using equation Eq96), (15b), and(17), we recognize that
T Xip+| b- 2o 26)
b=| P —|P - |D. ax o€
ot ot -, T—t. 2
Vex p (Vet) =t 7S (33
Bending stresses take their name because they only(t@ve
and (tb) components, that is, normal to the contact line.finally leading to required equality
Bending stresses are found in cables, strings, ropes, fila-
ments, and quasi-1D materigl9]. Collecting results, the ) 9§ _[df¢) on (34
total 1X 3 line stress tensor {4.3] “os lon) os” )
ax ax The left-hand side is the force on the contact lisee Eqs
_ Tt tp thipy el tad gs.
T=TH TR+ TRb=xtt+{ p at | b o7t)tb' (36), and (373 below] and the term in parentheses on the

(27 right-hand side is the director torque that appears in the line
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torque balance equatidi30). Equation(34) establishes that Xo
the force balance equation implies the torque balance equa- fr=—g (38b)
tion, as in the bulk casgg].

In partial summary, we showed that the line tension vector ) _
& is the line stress vectadr’, and established the correspon- fotp-(FstFo)=0, (389
dence between the previously formulated stress tensor model an oep
[13] and the present contact line vector formulation. The fo=—s- —+x{x+x"[(n-p)®=(n-1)?]}, (380
torque generated by anchoring energy on the director is equal Js an
and opposite to the torque acting on the unit tangent. The
origin of the energy contributions to the line tension vector fp+b- (Fst+Fp) =0, (389
sheds light on the mechanism that generates macroscopic n aeh
i n
line stress. fo= o ﬁ—n'*‘KX"(ﬂnipb) ’ (38f)

V. SHAPE EQUATION FOR ANISOTROPIC CONTACT . . .
LINES AND NEMATIC CONTACT LINES yvherefi ; |=_t,_p,b, are the r_nagmtudes of tangeptlal, bend-
ing, and twisting forces acting on the contact line, respec-
In this section, we use the line tension vecfoo derive  tively, and wherey”=y,. Clearly line tension anisotropy
the governing force balance equation on a contact line, theenormalizes the effect of the line tensigron the curvature
anisotropic contact line-shape equation, and the nematic cofierce. Equation(38d) shows that the effective line tension
tact line-shape equation. Details of the force balance equay. in the presence of anisotropy depends on nematic orien-

tion using the line stress model are giver[ 118]. tation with respect to the contact linges=x+x'[(n-p)?
The static force balance equation on anisotropic liquid—(n-t)?]. In addition, the 1D shape equati¢88d) shows
crystal contact lines is given 4yL3] that line gradients of the orientation give rise to new
curvature- and torsion-independent contributions. For isotro-
V- TetFst+Fp=0, (35  pic contact lines, Eqg38) simplify to
where Fg is a junction sum of surface forces afig is a IXo
junction integral of long-range bulk forces. For isotropic lig- Ezol kXotp-Fs=0, b-Fs=0. (39)
uids, in the absence of line and bulk forces, E3%) reduces
to the contact angle Young equatif8i: p- Fs=0. Using the Thep component of the force balance equati¢8c) and
equality T=t£, the anisotropic contact line force balance (38d) is the line-shape equation, since it governs its curva-
equation(35) simplifies to ture, and is the 1D analog to the 2D nematic Herring equa-
tion for anisotropic surfacef30], given in Eq.(5). A more
23 FAF -0 36 revealing expression of E¢38d) is obtained by separating
£+ sthp= (36 and identifying the physical mechanism that can change the

shape of the line. The three mechanisms contributing to the
whose projection along the principal geometric fragpe,p)  bending forcef, are
yields the following much simpler equations:

" 2 2 Jn &SP
a8 fp= &x + kx'[(n-p)"—(n-)°] + = Tn
E_ Kgp +t- (FS+ Fb) =0, (3769 ﬁn:l’;;gm line orientation dimure
; (40
J
(ai + ké&t— T§b) +p-(Fst+Fy)=0, (37b) which shows that bending forces are generated by the contact
S line length, the contact line orientation, and director gradi-
265 ents. The correspondence between the contact line and the
interface shape equations is

—o T 7P| +b- (Ft Fp) =0, (379 pe €q
where ¢, £P,£°) are defined in Eq(29). Equations(37) are Interface Contact Line
consistent with the classical force equations for rods, stringsension y %
filaments, and cabl€29]. Equations37b) and(37¢) are the  anisotropic effect ¥ X
shape equation for anisotropic contact lines, since they govgeometric vectors e .k Dt
ern the curvaturec and twist 7 of the line. For the current ffect B f
constitutive Eq.(15b) there is no torsion energy associated ®""°¢ ) Pe p
with the contact line{see Egs(15)] and hence Eqs(37)  Shape equation Q) (40)
simplify to where all symbols have been previously defined. The bend-

ing forcef, acting on the contact line is the 1D analog of the
fi+t-(Fs+F,)=0, (3839 capillary pressure-p. across the interface.
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For straight contact lineg«=0), the only bending force is Tr— K{1+W[(n-p)2—L(n-1)2]}=0 (45)
generated by director curvature, 2 ’

an 9P an where we dropped the subscript for convenience. Thus the
P8 a_n:X”[ n-(tp+pt)- %] (41 contact line conformation depends on geometnd orien-
tationn. The four characteristic small amplitude line fluctua-

For curved contact lines and director orientation along thdion modes are(a) bending-tangential(BT) mode, (b)
principal axis, say1=p, the bending forcd, is bendm_g—homeotromeH), (c) hellcal—tangenna(ﬂ'l'_), and
(d) helical-homeotropiqHH), discussed below; it is noted
fo=rxXo, (420  that bending and helical refer to the geometry of the mode
while tangential and homeotropic refer to the director orien-
as in an isotropic contact line. For curved contact lines andation n with respect to the unit tangent
orientation along the unit tangemt=t,

A. Bendi d
Ya ending modes

fp=x(xO—7 . 43)

The bending or sinusoidal mode is planar and the line is
confined to a plane, say—z. In a rectangular coordinate
and the bending force is renormalized by the anchoring ensystem, assuming a small harmonic perturbation of ampli-
ergy. Since the sign of, is undetermined, competition or tudea and wave vectot; on a contact line along the axis,
cooperation between contraction and tilting of the contacthe line equation, the unit tangent vectpthe principal unit

line may result. normal vectomp, and the curvature are given by
In partial summary, the shape equatidB88c) and (38d
for anisotropic contact lines are the 1D analog of the 2D r=[acog7z02)], (46a
capillary pressure Herring equatidgfi) for anisotropic sur-
faces[30]. Bending forces in anisotropic liquid-crystal con- t=[—aksin(5z,0,1)], (46b)

tact lines include a number of novel effeci®) bending
forces even for straight contact linesb) orientation-

dependent renormalization of the line tension coefficents due p=[1,0a7sin(»2)], (469
to anchoring energy, an@) bending forces due to orienta- .

tion curvature. We next analyze the stability of nematic- k=—an’sin(yz). (460
liquid-crystal contact lines, where the manifestations of these

novel phenomena clearly emerge. (a) Bending-tangentialBT) mode. For tangential orienta-

tion n=(0,0,1), the threshold equation gives
V1. APPLICATION OF LINE VECTOR
THERMODYNAMICS: ANCHORING-DRIVEN SHAPE — , W
TRANSITIONS IN NEMATIC CONTACT LINES o= ~a7°sin(72)| 1- = =0. (47)

In this section, we use the new formalism to analyze lin-
ear instabilities of the straight nematic contact line driven byThus a bending-tangential mode emerges WWhen2.
changes in anchoring energy. These changes may arise due to(b) Bending-hometropi¢BH) mode. For homeotropic ori-
changes in temperature or concentration. The spirit of thentationn=(1,0,0), the threshold equation gives
presentation is to provide an example of the utility of the
c_ontact line vgctor approaqh. We reali_ze that a complete and ?gh: —an?sin(72){1+W}=0. (48)
rigorous solution to nematic contact line problems involves
the simultaneous solution of bulk, interfaces, and line equa- ] )
tions[13], which is beyond the scope of this work. Thus a bending-homeotropic mode emerges wheh<W
We assume that is given and constant and the soft con- <~ L
tact line changes conformation due to changes in the anchor-
ing energy. The amplitude of the conformational change is B. Helical modes
infinitesimal since we consider linear instabilities. The scaled

bending force that determines the shape of the line is, frorrt1he surface of a cylinder of radius In a rectangular coor-

Ea. (40 dinate system, the helical contact line parametrizatic),
T=f =1+ WI(n-0)2—1 (n.1)2 a4 the unit tangent vectar, 'ghe principal unit normal vectqp,
p=fp/Xo= K [(n-p)"=2(n07h - (449 and the curvature are given by

The helical mode is nonplanar and the line is confined to

_X2 s s bs
W—X—O. (44b) r=|acos—,—asin—,—|,
c c'c
The instability threshold condition for deviations from a (493
straight line ¢=0) configuration is then c=+a%+b?
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a_ s a sb
t=| — =sin—,— —cos—, —|,
c ¢ ¢ <c'c
(49b
B S s SO !
P= COSE, smE, , K= ?

The limit of a straight line appears as-0, c—b, and«—?0.
The magnitude ob is the pitch of the helix.

(a) Helical-tangentialHT) mode. For tangential orienta-
tion n=(0,0,1), the threshold equation gives

2o

Thus the helical-tangential mode emerges whgv
>2(c/b)?. As a—0, this threshold converges to the thresh-
old of bending-tangential mod&yv>2.

(b) helical-hometropi¢HH) mode. For tangential orienta-
tion without loss of generality, we take=(1,0,0, and the
threshold equation gives

W
2

a

*_
ht CZ

(50

a\?/  s\?
. 2: —_— n—
(n-t) (c) (smc) , (51a
s 2
(n~p)2=<cosE) , (51b)
— a s\? 1/a\? s\?
hh= ~ o2 1+W cosE —35lc smE =0.
(510
Thus the helical-tangential mode emerges when
w 1 52
< {5)2 1a2,(s)2' (52
cos—|| —=|=]| |sin =
c 2\c c

In the limit of infinitesimal helix radius¢— 0), the inequal-
ity becomes

-1
s

=l

w< (53

COS—

and the relevant upper value W §<—1, which agrees with
the bending-homeotropic case.

Figure 6 shows the contact line-shape phase diagram in

terms of the dimensionless anchoring enéfgyas a function
of helix aspect rati@/b. The sinusoidal curves represent the
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FIG. 6. Nematic contact line-shape phase diagram in terms of
the dimensionless anchoring eneidyas a function of helix aspect
ratioc/b. The sinusoidal curve represents the bending modes, while
the helical curve represents the helical modes. The straight line is
defined byc/b=1 (i.e., a=0, k=0). For tangential orientation
(W>0 secto), the bending-tangentidBT) and helical-tangential
(HT) modes set in foWW>2. The smaller the pitch, the higher the
value of the required anchoring constakt)( necessary to find the
HT mode. Likewise, when the director is normal to the line and
—2<W< -1, the bending-homeotropic(BH) and helical-
homeotropic(HH) modes set in. In the linear regime, the critical
value ofW for helical-homeotropic distortions is independent of the
pitch.

modes are stable. For tangential director orientaftbe W

>0 sectoj, the bending-tangential(BT) and helical-
tangential (HT) modes set in folW>2. The smaller the
pitch, the higher the value of the required anchoring constant
(W) necessary to find the HT mode. Likewise, when the
director is normal to the line aniiv<-1, the bending-
homeotropic(BH) and helical-homeotropitHH) modes set

in. In the linear regime, the critical value &% for helical-
homeotropic distortions is independent of the pitch. As the
pitch decreases, additional energies have to be taken into
account to regularize this Haddamard-like instability. Good
candidates are higher-order bending correct[@d$ and sur-
face and bulk forces acting on the lifg3], but their exact
treatment is beyond the scope of this paper.

VII. CONCLUSIONS

bending modes, while the helical curves represent the helical Lin€ tension vector thermodynamics provides a clear

modes. We recall that in this analysiss given and constant.
The straight line is defined by/b=1 (i.e,a=0, k=0). The

pathway to analyze contact line problems in the presence of
anisotropy by differentiating the two possible elastic modes,

contact line conformation diagram is divided into three sechamely change in contact line length and change in contact

tors whose boundaries are obtained from E@S), (48),
(50), and (52). Within the upper(half-parabola sector, the
straight contact line is unstable and the bending and heli
modes are stable. Within the lowérectangle sector, the

line orientation[Egs. (15b) and (15¢)]. The equivalence of
contact line vector thermodynamics and the equations of 1D
xematostatics were establishflq. (28)]. The 1D shape
equation[Eq. (40)] shows that anisotropy renormalizes the

straight contact line is unstable and the bending and heline tension coefficient with a term that depends on the cur-

041707-8
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vature of line tension in orientation spa€Eq. (40)]. An

PHYSICAL REVIEW E 69, 041707 (2004
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